EN.IO.PMS-970T JULY 2024

USER'S MANUAL

Programmable Meter

PMS-970T Firmware: od v.5.00

APLISENS S.A., 03-192 Warszawa, ul. Morelowa 7 tel. +48 22 814 07 77; fax +48 22 814 07 78 www.aplisens.pl, e-mail: marketing@aplisens.pl

Symbols used	
Symbol	Description
$\mathbf{\underline{\wedge}}$	Carefully follow the information in this document to ensure safety and full functionali- ty of the device.
i	Information particularly useful for the installation and use of the device.
X	Information on the disposal of used equipment.

BASIC REQUIREMENTS AND SAFETY OF USE

The manufacturer takes no liability for damage resulting from incorrect installation of the device, neglecting to keep the device in proper technical condition, and using the device for purposes other than intended.

Installation should be conducted by qualified personnel, authorized for installation of electrical equipment and measuring devices. The installer is responsible to conduct the installation according to this manual as well as laws and standards of safety and electromagnetic compatibility applicable for this kind of installation.

In any installation equipped with measuring devices, there is an injury hazard from compressed agent in case of a leak. Follow all safety requirements during the installation, use, and inspection of the display.

In case of malfunction, disconnect the device and return it to the producer or an authorized service unit for repair.

In order to minimize the possibility of malfunction and the resulting hazard to personnel, avoid installing the device in dangerous environment where there is a possibility of the following:

- mechanical impact, excess shock and vibration;
- excess temperature fluctuation;
- steam condensation, dusting, icing.

Changes made to the production may be introduced before the paper version of the user's manual is updated. The up-to-date user's manual is available on the manufacturer's website: <u>www.aplisens.pl</u>

TABLE OF CONTENTS

1.	INTRODUCTION	2
2.	SAFETY	2
3.	LIST TO CHECK COMPLETENESS OF DELIVERY	
4.	TRANSPORT AND STORAGE	
4.1.	Transport	
4.2.	Storage	
5.	WARRANTY	2
6.	CONSTRUCTION	
7.	INSTALLATION	
8.	CONNECTING	
8.1.	Safety precautions	5
9.	TECHNICAL PARAMETERS	
10.	OPERATION	
10.1.	Programming	
10.2.	Set point programming	14
10.3.	Alternate output control	15
10.4.	Error codes	15
10.5.	Serial communication	15
10.6.	Display test	20
11.	REVISION HISTORY	
12.	INSPECTION	
12.1.	Periodical inspection	21
12.2.	Non-periodical inspection	21
13.	SCRAPPING AND DISPOSAL	
14.	ADDITIONAL INFORMATION	
	LIST OF DRAWINGS	

LIST OF DRAWINGS

Figure 1. Recommended installation dimensions	4
Figure 2. Acceptable installation dimensions	4
Figure 3. Fixing with holders	4
Figure 4. Installation of several devices	5
Figure 5. Insulating the leads and dimensions of cable ends	6
Figure 6. Description of terminals for standard version	6
Figure 7. Description of terminals for version with additional passive current output	7
Figure 8. Connection of 2-lead current transmitters	7
Figure 9. Connection of 3-lead current transmitters	7
Figure 10. Connection of voltage transmitters	8
Figure 11. Connection of passive current output	8
Figure 12. Connection of power supply and 4 transmitters operating loads	8
Figure 13. Connection of power supply and 2 transmitters operating loads	9
Figure 14. Examples of serial connection of quench circuit to a) transmitter contacts, b) inductive	e load
	9
Figure 15. Description of the control panel	12
Figure 16. Hysteresis definition	14
Figure 17. Operation of the algorithm for 3 alarms/relays	15

LIST OF TABLES

Table 1. Assignment of terminal	10
Table 2. Technical parameters	11
Table 3. Button function in programming mode	13
Table 4. Programming menu	13
Table 5. Meter's programming example	14
Table 6. Error codes	15
Table 7. Modbus register assignment	17

1. INTRODUCTION

The subject of this instruction manual is the PMS-970T programmable meter.

The manual includes data, hints, and recommended action for installation and usage of the meter, as well as troubleshooting tips.

2. SAFETY

- The installation and start-up of the device and any activities related to operation shall be carried out after thorough examination of the contents of user's manual and the instructions related thereto.
- Installation and maintenance should be carried out by qualified staff having the required authorizations to install electrical and measuring devices.
- The device shall be used according to its intended purpose in line with the permissible parameters

- Before installing or disassembling the device, it is absolutely necessary to disconnect it from the power source.
- No repairs or alterations to the transmitter electronic system are permitted. Assessment of damages and possible repair may only be performed by the manufacturer or authorized representative.
- Do not use instruments if damaged. In case of malfunction, the device must be put out of operation.

3. LIST TO CHECK COMPLETENESS OF DELIVERY

Along with the meter, the user receives the following:

- a) Product certificate, functioning as a warranty card;
- b) Declaration of conformity (on customer's request);
- c) Instruction Manual designated " EN.IO.PMS-970T"

Positions b), c) are available from the website <u>www.aplisens.pl</u>.

4. TRANSPORT AND STORAGE

4.1. Transport

When transported, the meters should be packed in individual and/or group packaging and carried on a covered means of transport. The packaging should be secured against shifting and atmospheric weather effects.

4.2. Storage

The meter should be stored in the manufacturer's packaging, in a covered room, free of vapor and corrosive agents, where temperature and relative humidity do not exceed maximum acceptable limits.

5. WARRANTY

The producer provides warranty under the conditions specified in Product Certificate that works as a warranty card.

Warranty will be void if the device is not used according to its intended use, the user does not follow this instruction manual, the device is handled by unqualified personnel or the meter has been tampered with.

6. CONSTRUCTION

The **PMS-970T** meter has two measuring inputs – one 0-20 mA current input and one 0-10 V voltage input. The current input is equipped with a safety device that protects the measuring resistor from damage. The input current is limited to 40 mA (typically). When the temperature of the measuring resistor falls, the safety device will automatically switch off and the system displays the measurement value again. After the safety device has switched off, the measurement may be slightly less precise for a while (until the system cools down entirely).

The readout can be freely scaled by the user. Readout rounding and filtering grade can also be programmed.

The **PMS-970T** version of the meter has a small digital display and a tricolour LED bargraph showing the signal level on a percentage scale and the set alarm thresholds. The indicator can operate in single-color or three-color mode, showing programmed value ranges.

Depending on version, 2 or 4 relay outputs are available. Threshold levels with individual hysteresis and ON/OFF function are user programmed. The special function called "alternate output control" allows optimal control of cascaded pumps.

Optionally, the meter can be equipped with an passive current output. He range of current change at the output is programmed separately. The RS-485 communication link and the transmitter power output are available as standard option. The meter is available in one universal version of its power system: 20 - 250 V AC/DC.

The **PMS-970T** is used for adjustment processes e.g. for temperature (heating / cooling) with adjustable delay times for engaging output transmitters, level operation or valve operation.

7. INSTALLATION

The device is designed and made in a way that provides maximum safety of use and resistance to interference that occur in a typical industrial environment. For these features to be fully used, the installation of the device should be conducted properly, according to the relevant standards.

 \triangle

Prior to installation, read the basic safety requirements on page \rightarrow 2.

Prior to connecting the device to the electrical system, check if voltage on the electrical system corresponds to the nominal voltage value specified on the device's label.

The load should meet the requirements specified in Technical Data.

All installation work must be performed with power disconnected..

Consider the necessity of securing the power clamps against unauthorized access.

The device should be installed indoors, in a housing (panel, switchbox) providing proper protection against electrical surges. Metal housing must be grounded according to relevant laws.

Prior to assembly, disconnect power from the electrical system.

Prior to switching on the device, carefully inspect if the connections were made correctly.

To install the device, prepare a 90,5 x 43 mm opening in the panel (\rightarrow Figure 1. Recommended installation dimensions, \rightarrow Figure 2. Acceptable installation dimensions). The thickness of the material that the panel is made of should not be more than 5mm. While preparing the installation opening, allow for recesses to accommodate catch pawls on both sides of the housing (\rightarrow Figure 1. Recommended installation dimensions, \rightarrow Figure 2. Acceptable installation dimensions). Place the device in the opening, inserting it from the front side of the panel, then fix it with holders (\rightarrow Figure 3. Fixing with holders). Minimum distance between axes of installation openings – resulting from thermal and mechanical working conditions – is 115mm (horizontal axis) and 67mm (vertical axis) (\rightarrow Figure 4. Installation of several devices).

Figure 3. Fixing with holders

Figure 4. Installation of several devices

8. CONNECTING

All connection and installation steps must be performed with power disconnected.

8.1. Safety precautions

Installation should be conducted by qualified personnel, authorized to install electrical devices. All available safety requirements must be considered during installation. It is the installer's duty to perform installation according to this instruction manual as well as laws and standards of safety and electromagnetic compatibility, relevant to the type of installation performed.

The device is not equipped with an external safety cut-out with minimum possible nominal current value (we recommend a bipolar cut-out for nominal current no more than 2A) and a power switch in the vicinity of the device.

If a unipolar cut-out is used, it must be mounted on the phase lead (L).

Select the cross-section of the power cable so that protection of the cable is provided with a fuse from the device's side in case of short-circuit on the cable.

Cable types must correspond to relevant standards, local laws and regulations.

To provide protection against accidental short-circuit, the connecting leads should be ended with proper insulated cable ends.

Tighten the clamp bolts. The recommended torque of tightening is 0,5 Nm. Loose bolts may cause fire or malfunction. Tightening the bolts too much may lead to damage of connections inside the device and breaking the thread.

If the device is equipped with separable clamps, they should be tucked into proper connectors in the device even if they are not used for any connections.

Clamps that are not in use (marked n.c.) must not be used to connect any connection leads (e.g. as bridges), since it may cause damage to the device or an electric shock.

If the device is equipped with housing, shields, and compression glands to protect from water, pay close attention to tighten or compress them properly. When in doubt, consider using additional precautions (shields, canopies, leak stoppers, etc.). Negligent installation may increase the risk of an electric shock.

Once installation is complete, do not touch the connections when power is on due to a possibility of an electric shock.

Due to possible significant interference occurring in industrial systems, use adequate precautions that ensure proper operation of the device. Disregarding the following tips may, in certain circumstances, lead to exceeding the levels of electromagnetic disturbance for a typical industrial environment, which in turn may cause incorrect readout on the device.

- Avoid joint (parallel) placement of signal and transmission lines with power lines and lines for operating inductive loads (e.g. contactors). Such lines should cross at right angle.
- Contactors coils and inductive loads should be equipped with counter-interference systems such as RC-type.
- It is recommended to use shielded signal lines. Signal line shields should be grounded at one end of the shielded line only.
- In case of magnetically induced interference, it is recommended to use twinned couples of signal lines (spirals). The spiral (best shielded spiral) should be used for communication of RS-485 serial transmission.
- If the measuring or operating circuits are longer than 30m or leave the building, it is required to
 install additional safety precautions against overvoltage.
- In case of interference from power supply, it is recommended proper interference eliminators. The connections between the eliminator and the device should be as short as possible and the metal housing of the eliminator should be grounded with the largest area possible. Do not let the leads connected to eliminator output run parallel to interfered lines (e.g. operating circuits for transmitters or contactors).

Power supply and measurement signals are connected through screw joints located in the rear part of the device housing.

Figure 5. Insulating the leads and dimensions of cable ends

Figure 6. Description of terminals for standard version

Figure 7. Description of terminals for version with additional passive current output

Figure 9. Connection of 3-lead current transmitters

Figure 10. Connection of voltage transmitters

Figure 11. Connection of passive current output

Figure 12. Connection of power supply and 4 transmitters operating loads

Transmitter output contacts are not equipped with quench circuit. When using transmitter outputs for switching inductive loads (contactor coils, transmitters, electromagnets, solenoids, etc.) it is required to use an additional quench circuit (typically a 47nF condenser/min. 250VAC in series with 100R resistor, connected in parallel to engaged inductance). Using a quench circuit results in decreasing the level of interference generated while switching and increasing the durability of transmitter contacts.

Figure 14. Examples of serial connection of quench circuit to a) transmitter contacts, b) inductive load

Table 1. Assignment of terminal

Connector	Pin	Symbol	Terminal description	Rating
			· · · · · ·	20 2501/
POWER SUPPLY	2	L/+	- supply	20 - 250 V
	2	IN/-		AC/DC
	3			
SIGNAL INPUT,	- 4 - 5	-	 excitation output 	24VDC
EXCITATION OUT-	5		signal ground	
PUT	7	m A		20m4
	8	V	voltage input	101/
	9	v		101
ANALOG OUTPUT.	10	4-20mA	analog output	4-20mA
SERIAL	11	E	RS485 ground	
INTERFACE	12	A+	RS485 interface A line	
	13	B-	RS485 interface B line	
	14	С	AL1 relay common	
	15	NO	AL1 relay NO	
	16	С	AL2 relay common	
RELAY OUTPUT	17	NO	AL2 relay NO	1 \ /250\ / \ C
4P version	18	С	AL3 relay common	TAZSOVAC
	19	NO	AL3 relay NO	
	20	С	AL4 relay common	
	21	NO	AL4 relay NO	
	14	С	AL1 relay common	
	15	NO	AL1 relay NO	
	16	NC	AL1 relay NC	
RELAY OUTPUT	17			10/2501/00
2P version	18	С	AL2 relay common	14/230740
	19	NO	AL2 relay NO	
	20	NC	AL2 relay NC	
	21		supply	

9. TECHNICAL PARAMETERS

Table 2. Technical parameters

CATEGORY	PARAMETER	VALUE	COMMENTS
	Accuracy	+/-0.1% FS	
	Temperature coefficient	+/- 100ppm / °C	
	Internal resolution	15 bit	
INPUT	Sampling rate	16,6Hz	
	Filter time constant	0-15,36s	
	Noise rejection	>65dB	f=50Hz
	Range	020mA	021mA
CURRENT	Input resistance	<56Ω	
INPUT	Max. input current	Internally limited	
	Overvoltage protection level	-0.6+36V=	transil
	Range	010V	010.5V
VOLTAGE	Input resistance	>50kΩ	
INPUT	Overvoltage protection level	-0.6+36V=	transil
	Rating	1A / 250VAC	
	Contact configuration (2P version)	2 x NO/NC	
CONTROL	Contact configuration (4P version)	4 x NO	
RELAY OUTPUT	Open contact withstand voltage	1000VAC	
	Contact life mechanical / electrical	15x10 ⁶	
	Load capacity	250VA	resistive load
	Range	321mA	
	Output voltage range	10-30VDC	
	Accuracy	+/- 0.1%	
	Resolution	12 bit	
ANALOG OUTPUT	Temperature coefficient	+/- 100ppm/C	
	Output voltage effect	+/- 20ppm/V	
	Overvoltage protection level	36V	transil
	Refresh rate	30Hz	
	Туре	RS485	
	Protocol	MODBUS RTU	
SERIAL	Baude rate	2.4, 4.8, 9.6, 19.2kbps	
INTERFACE	Data bits	8	
	Overvoltage protection level	+7 / -12V	transil
	Voltage	24VDC, +5/-10%	
SENSOR	Current max	25mA	
EXCITATION	Current limit	continuous	
	Overvoltage protection level	36V	
POWER	Voltage – universal version	20-250V AC/DC	separated
SUPPLY	Power consumption	<4,5W	
	Digits / Colour	4 / Green LED	
DISPLAY	Digit hight	7mm	
	Bargraph resolution	26	
	Operating temperature	20+50°C	
	Storage temperature	20+70°C	
	Humidity (relative)	10-95%	without condensing
ENVIRONMENTAL	Enclosure protection (front)	IP-65	
	Enclosure protection (rear)	IP-20	
	Pollution degree	2	
	Overvoltage category	II	

ELECTRIC ISOLATION	Power supply – other circuits	2300VAC	
	Relay outputs – other circuits	2300VAC	
	Analog output – signal input	1000VAC	
	Dimension	48x96x120mm	
	Weight	280g	
	Panel cut-out	44.5x91mm	
	Panel thickness	015mm	
	Horizontal spacing	>70mm	axis to axis
	Vertical spacing	>120mm	axis to axis
COMPLIANCE	Electrical safety	EN 61010-1:2011	
	EMC	EN 61326-1:2021-10	

10. OPERATION

10.1. Programming

Incorrect programming may cause incorrect read-out and uncontrolled output relay operations!

The meter has many user-selected programme settings. All settings may be done with front panel push-buttons. Set-points levels are programmed directly in normal mode. Other settings require entering programme mode. Programming menu is code protected.

To programming mode press ESC key for 2 seconds until "Code" message appear Then press: ESC, ▲, ▲, ENT combination. "Fn00" message should appear.

In programming menu several functions are available. Detailed function description is given in **Table 3.** Button function in programming mode.

Use cursor buttons to navigate through the functions and **ENT** button to enter selected function. Numerical values should be set digit by digit. Flashing digit should be adjusted using cursor buttons and stored with ENT button.

All the settings are stored in non-volatile memory while leaving the programming menu. PMS-970T

Figure 15. Description of the control panel

Table 3. Button function in programming mode

Button	Description
•	 scrolling up through menu functions and options
	 increasing numerical values
-	 scrolling down through menu functions and options
•	 decreasing numerical values
FOO	– ESCAPE
ESC	 go to previous menu level
ENT	 ENTER, access to function
	 selected value/option confirmation

Table 4. Programming menu

Menu function	Description	Available options	Factory setting	Comments
Fn00	Input selection	I - 0-20mA current input active, U- 0-10V voltage input active	I	
Fn01	Linearization points	2-16	2	
Fn02	Display scaling	P01 do Pnn scaling points -9.99 - 99.99 input value (with DP) -999 do 9999 display value	P01 : 00.00 : 0000 P02 : 20.00 : 2000	Define input value and display value for each scaling point ⁽¹⁾
Fn03	Decimal point	0000; 0.000; 00.00; 000.0	00.00	Leading zeros are suppressed
Fn04	Display round- ing	1, 2, 5, 10	1	(without rounding)
Fn05	Filter time – constant	0 – 20ms, 1 - 60ms, 2 - 120ms, 3 - 240ms, 4 - 480ms, 5 - 960ms, 6 - 1.92s, 7 – 3.84s, 8 - 7.68s, 9 - 15.36s	2	
Fn06	Bargraph mode	3C –three colour (green, yel- low, red); 1C - single colour (green)	3C	(2)
Fn07	Set-point mode	AL1, AL2, AL3, AL4 H - High L - Low A - Alternate 1 – 9999 – hysteresis (display divisions)	AL1 : H : 1 AL2 : L : 1 AL3 : H : 1 AL4 : L : 1	(3)
Fn08	Output scaling	P01 – zero (low) P02 – full scale -999 to 9999 meter's display value 03.00 to 21.00 [mA] output current	0000 : 4.00 2000 : 20.00	Define meter's display value and output current for both scal- ing points.
Fn09	Reset all	Ecod ⁽⁴⁾		Reset to factory setting
Fc01	Serial comm. address	01 h - F7 h - address (000-247)	01	
Fc02	Serial comm. speed	2.4, 4.8, 9.6, 19.2 kbps	9.6	
Fc03	Serial comm. parity	no -no parity even - even parity odd - odd parity	even	

Remarks:

(1) The meter is factory set to linear scale with two scaling points. If non-linear scale is needed the required number of scale points should be set in Fn01 function at first. Then, the input and display values for each point should be set. Doubled input values are automatically rejected. Scaling point values are automatically sorted by input values in ascending order, after each Fn02 function access.

⁽²⁾ In 1 colour mode the bargraph is green with red set-points.

In 3 colour mode the central zone between AL3 and AL4 is green. Zones AL1 - AL3 and AL2 - AL4 are yellow. Zones above AL1 and below AL2 are red. Relation AL2<=AL4<=AL3<=AL1 should be true for proper colour zone display.

Bargraph 0% indication corresponds to the lowest scaling point, while 100% corresponds to the highest scaling point of the digital display analog.

- ⁽³⁾ The set-point number is equal to relay number, excluding alternate mode. Overall hysteresis is equal to twice the value set in Fn07 function.
- ⁽⁴⁾ While "code" message appears, press ENT button four times.

Table 5. Meter's programming example

Parameter	Set value	Menu function	Settings
Input type	current	Fn00	
Scaling points number	2	Fn01	2
Input range	4-20mA	En02	P01 : 04.00 : 0000
Display range	0-3000	FIIUZ	P02 : 20.00 : 3000
Decimal point position	000.0	Fn03	000.0
Rounding	none	Fn04	1
Filter time constant	240ms	Fn05	3
AL1 "ON" level	>2500	(1)	AL1 : 2500
AL2 "ON" level	<1000	(1)	AL2 : 1000
AL1 hysteresis	5	En07	AL1 : H : 0005
AL2 hysteresis	10		AL2 : L : 0010
Output current at zero display	5mA	En09	P01 : 0000 : 05.00
Output current at full scale (3000) display	19mA	F1100	P02:3000:19.00

⁽¹⁾setting available in normal mode

AL1=2500 – set point value AL1+h=2505 – turn-on level AL1-h=2495 – turn-off level h=5 – programmed hysteresis

Figure 16. Hysteresis definition

10.2. Set point programming

Set-points are programmed in normal mode of the meter using front panel buttons. Press \blacktriangle button for 3 seconds to enter AL1 or AL3 programming. Choose AL1 or AL3 with cursors and press **ENT** button. Adjust each flashing digit using $\blacktriangle \forall$ buttons and store the value with **ENT** button. Similarly AL2 and AL4 are programmed while activated with \forall button.

The relation AL2<=AL4<=AL3<=AL1 should be true in 3 colour bargraph mode for proper colour zone display.

10.3. Alternate output control

PMS970 has built-in "alternate output control" function, called also "alternate lead/lag control". While "A" option in Fn07 menu function is set, corresponding set-point belongs to "alternate output group". The group may consist of 2, 3 or 4 set-points and relays but the relays are not dedicated to certain set-points. Relays in the group are activated with special queue algorithm. After each ON/OFF sequence the relay is assigned to be the last in the queue. In this way the ON time of the grouped relays is equally shared. In the case of the failure of one of the controlled devices, remaining devices still work on all grouped set-points. The diagram in → Figure 17. Operation of the algorithm for 3 alarms/relaysBłąd! Nie można odnaleźć źródła odwołania. illustrates the principle of 3 level group operation.

Alternate output control is typically used for level control applications with cascaded pumps.

Figure 17. Operation of the algorithm for 3 alarms/relays

10.4. Error codes

Table 6. Error codes

Error code	Description	Possible reasons	Operation
ErrF	Calibration memory error.	 abnormal EMC condition internal fault 	Turn off the meter for 5 s. If message reappears after power-up contact the service.
InIF	Calibration memory initialization.		Turn off the meter for 5 s. If message reappears after power-up contact the service.
ErrU	User memory error.	 abnormal EMC condition internal fault 	Turn off the meter for 5 s. If message reappears after power-up press ENT button. Meter reads factory settings with momentarily displayed InIU message.
InIU	User memory initialization.		If the message appears after each power- up contact the service.
Display flashing	Input un- der/overrange.		Check signal source. Check input circuitry.
9999 (flashing)	Display overrange.	 incorrect meter settings incorrect input connection internal fault 	Check signal source. Check meter's scaling. Check input circuitry.
-999 (flashing)	Display underrange	 incorrect meter settings incorrect input connection internal fault 	Check signal source. Check meter's scaling. Check input circuitry.

10.5. Serial communication

PMS-970T has serial communication option with RS-485 internal module installed. The meter works with Modbus RTU protocol as slave device.

Function 3 (register read) and function 16 (multiple registers write). The data exchanged with the meter are variable type "V" or parameters "P".

Parameters are also accessible from programming menu. Variables are read-only (R). Parameters are read-only type (R) or read/write type (R/W).

Variables and parameters are grouped for simplicity and functionality:

Group	Register range	Description
1	400002-400003	digital read-out, decimal point position, general status, set-point sta-
		tus
2	400004-400008	set-point values, output current
3	400009-400015	bargraph read-out
4	400033-400084	programming menu settings without serial port settings
5	400097-400099	serial port settings
6	418435	Modbus firmware identification

Data blocks exchanged with PMS970 should contain only registers specified in tables below. In other case 0x02 exception code (ILLEGA_DATA_ADDRESS) is returned.

Modbus Function 16 limitations:

- 1. In response to (R) specified register write attempt, 0x02 exception code (IL-LEGA_DATA_ADDRESS) is returned.
- 2. Registers from the range 40048-40080 must be sent in one frame. Register 40048 must contain the number of scaling points used. Following registers contain scaling points data. Each point definition requires two registers with input and read-out values. For two-point scaling next to 40048 register four registers and no more must be sent. Excessive data in the range of 40048-40080 causes 0x02 exception return. Unused set-point data fields in the meter are automatically cleared (filled with 25000 (0x61A8) control value).
- 3. Signal values in scaling data must be unique. In other case exception code 0x03 (IL-LEGA_DATA_VALUE) is returned.
- 4. Scaling data transmitted to the meter must be sorted by input value in ascending order. In other case exception code 0x03 is returned.

Example

2-point scaling - 4-20mA input with 0-1000 read-out: Data to be sent in one frame: 400048: 2 400049: 400050: 0

400049:	400
400050:	0
400051:	2000
400052:	1000

During manual programming with front keys the meter returns exception code 0x06 (SLAVE_DEVICE_BUSY) and no other data. The same exception is returned during internal EEPROM write process.

APLISENS[®]

 Table 7. Modbus register assignment

Register number/ Address	Variable/ Parameter	Туре	Value range	Default value	Comments
400002/ 0x0001	Digital read-out	Z (R)	-999 - 9999 (0xFC19-0x270F)	-	
400003/ 0x0002	Status	Z (R)	0-65535 (0x0000-0xFFFF)		bit0 (LSB): PP=1 – manual pro- gramming in progress bit1: EAL=1 - set-point program- ming in progress bit2: WEE=1 - memory write in progress bit3: MIG=1 - display flashing bit4: UND=1 - input underrange bit5: OVR=1 - input overrange bit6: MBAR1=1 - bargraph LED01 flashing bit7: MBAR26=1 - bargraph LED26 flashing bit8: ALR1=1 - AL4 relay ON bit9: ALR2=1 - AL4 relay ON bit10: ALR3=1 - AL4 relay ON bit10: ALR3=1 - AL4 relay ON bit11: ALR4=1 - AL4 relay ON bit13,bit12:DPH,DPL – DP posi- tion (Fn03): 00 - "0000" 01 - "00.00" 11 - "000.0" bit14: Input type: 0 - current 1 - voltage bit15: not used
400004/ 0x0003	Set-point 1 level	P (R/W)	-999 - 9999 (0xFC19-0x270F)	1800 (0x0708)	AL1
400005/ 0x0004	Set-point 2 level	P (R/W)	-999 - 9999 (0xFC19-0x270F)	200 (0x00C8)	AL2
400006/ 0x0005	Set-point 3 level	P (R/W)	-999 - 9999 (0xFC19-0x270F)	1500 (0x05DC)	AL3
400007/ 0x0006	Set-point 4 level	P (R/W)	-999 - 9999 (0xFC19-0x270F)	500 (0x01F4)	AL4
400008/ 0x0007	Output current	Z (R)	-32768 - 32767 (0x8000-0x7FFF)	-	*10 ⁻³ mA
400009/ 0x0008	Minimum read-out	P (R)	-999 - 9999 (0xFC19-0x270F)	0 (0x0000)	
400100/ 0x0009	Maximum read-out	P (R)	-999 - 9999 (0xFC19-0x270F)	2000 (0x07D0)	
400011/ 0x000A	Bargrafu heigh	Z (R)	0-27 (0x0000-0x001B)	-	 0 – Display underrange (LED01 flashing) 27 - Display overrange (LED26 flashing)
400012/ 0x000B	Bargrafu colour 0108	Z (R)	0-65535 (0x0000-0xFFFF)	-	Colour codes: 00 - off 01 - green 10 - red 11 - orange bit1,bit0: LED01(lowest) bit3,bit2: LED02 bit5,bit4: LED03 bit7,bit6: LED04 bit9,bit8: LED05

					bit11 bit10: LED06
					bit13 bit12: LED00
					bit 15, bit 14: LED07 bit 15 bit 14: LED08
					Colour codos: soo aboyo
					bitt bito: LEDOO
					bit2 bit2: LED10
400013/	Bargraph	7 (D)	0-65535		
0x000C	colour 0916	Z (R)	(0x0000-0xFFFF)	-	bit7,bit6: LED12
0.0000			(0.00000 0.0000)		bit9,bit8: LED13
					bit11,bit10: LED14
					bit13,bit12: LED15
					bit15,bit14: LED16
					Colour codes: see above
					bit1,bit0: LED17
					bit3.bit2: LED18
					bit5.bit4: LED19
400014/	Bargraph	7 (R)	0-65535	-	bit7 bit6: LED20
0x000D	colour 1724	2 (14)	(0x0000-0xFFFF)		hit9 hit8: LED21
					bit11 bit10: LED21
					bit12 bit12: LED22
					DIT15,DIT14: LED24
1000151	. ,		0.05505		Colour codes: see above
400015/	Bargraph	7 (R)	0-65535	-	bit1,bit0: LED25
0x000E	colour 2532	- ()	(0x0000-0xFFFF)		bit3,bit2: LED26
					bit15-bit4: -
400033/	Identification	P(R)	0-65535	-	0 – no number available:
0x0020	number	1 (13)	(0x0000-0xFFFF)		
400034/	Actual scaling	P(R)	From 2 (0x0002) to	2 (0x0002)	Actually defined In Fn02 number
0x0021	points number	1 (13)	Fn01 setting	2 (0x0002)	of sailing points.
400035/	Innut type	P (R/M)	0 (0x0000) current [mA]	0 (0x0000)	Ep00
0x0022	пристурс	1 (10,00)	1 (0x0001) voltage [V]	0 (020000)	1 1100
			0x0000 - 0000		
400036/	Decimal point		0x0001 - 0.000	2 (0×0002)	Ep02
0x0023	position	F (N/W)	0x0002 - 00.00	2 (020002)	FIIUS
			0x0003 - 000.0		
			1 (0x0001) - to 1		
400037/	Read-out		2 (0x0002) - to 2	4 (0×0004)	F=04
0x0024	rounding	P(R/VV)	5 (0x0005) - to 5	1 (0X0001)	FN04
	0		10 (0x000Á) -to 10		
400038/			0 - 9	0 (0-0000)	F . 05
0x0025	Filtering level	P (R/W)	(0x0000 - 0x0009)	2 (0X0002)	Fn05
			1 (0x0001) single		
400039/	Bargraph	P (R/W)	colour	3 (0x0003)	En06
0x0026	colour mode	. ()	3 (0x0003) tricolour	0 (0/0000)	1100
			0x0000 - H		
400040/	Al 1 mode			0 (0×0000)	En07 - Al 1 set-point mode setting
0x0027	ALLINUUE	F (IVV)		0 (0x0000)	Thor - ALT set-point mode setting
400041/					
400041/	Al 2 mode	P (R/W)	_"_	1 (0x0001)	Fn07 – AL2 set-point mode setting
400042/					
400042/	Al 3 mode	P (R/W)	_"_	0 (0x0000)	Fn07 – AL3 set-point mode setting
0x0029		· · ·		、	
400043/	Al 4 mode	P (R/W)	_"_	1 (0x0001)	Fn07 – AL4 set-point mode setting
0x002A		(,)			
400044/	AI 1 hysteresis	P (R/W)	1 – 9999	1(0x0001)	En07 - Al 1 set-point hysteresis
0x002B		. (10,00)	(0x0001 - 0x270F)		
400045/	Al 2 hystorosis	P (R/M/)	"	1 (0x0001)	Fn07 - AI 2 set-noint hysteresis
0x002C	171 2 11y31010313	· (\\\\)			
400046/	Al 2 hyptoropic		11		En07 AL3 set point hystoresis
0x002D		r (r./vv)			
400047/	AL 4 by atoroais		"	1 (0,0004)	En07 Al 4 pot point hyptorogic
0x002E		г (R/VV)			1 Ho T = AL4 set-point hysteresis

400048/ 0x002F	Scaling points number	P (R/W)	2-16 (0x0002 - 0x0010)	2 (0x0002)	Fn01
400049/ 0x0030	P01 input	P (R/W)	-999 - 9999 (0xEC19-0x270E)	0 (0x0000)	Fn02:P01
400050/	P01 read-out	P (R/W)	-999 - 9999 (0xEC10-0x270E)	0 (0x0000)	Fn02:P01
400051/ 0x0032	P02 input	P (R/W)	-999 - 9999 (0xEC19-0x270E)	2000 (0x07D0)	Fn02:P02
400052/ 0x0033	P02 read-out	P (R/W)	-999 - 9999 (0xEC19-0x270E)	2000 (0x07D0)	Fn02:P02
400053/ 0x0034	P03 input	P (R/W)	-999 - 9999 (0xEC19-0x270E)	25000 (0x61A8)	Fn02:P03 Initial value for unused
400054/ 0x0035	P03 read-out	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P03
400055/ 0x0036	P04 input value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P04
400056/ 0x0037	P04 read-out	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P04
400057/ 0x0038	P05 input value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P05
400058/ 0x0039	P05 read-out value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P05
400059/ 0x003A	P06 input value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P06
400060/ 0x003B	P06 read-out value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P06
400061/ 0x003C	P07 input value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P07
400062/ 0x003D	P07 read-out value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P07
400063/ 0x003E	P08 input value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P08
400064/ 0x003F	P08 read-out value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P08
400065/ 0x0040	P09 input value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P09
400066/ 0x0041	P09 read-out value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P09
400067/ 0x0042	P10 input value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P10
400068/ 0x0043	P10 read-out value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P10
400069/ 0x0044	P11 input value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P11
400070/ 0x0045	P11 read-out value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P11
400071/ 0x0046	P12 input value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P12
400072/ 0x0047	P12 read-out value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P12
400073/ 0x0048	P13 input value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P13
400074/ 0x0049	Read-out linear output	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P13
400075/ 0x004A	Low linear output value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P14
400076/ 0x004B	High linear output value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P14
400077/ 0x004C	Adres Slave	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P15

400078/ 0x004D	Baude rate	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P15
400079/ 0x004E	Parity	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P16
400080/ 0x004F	Modbus Firmware ID	P (R/W)	-999 - 9999 (0xFC19-0x270F)	25000 (0x61A8)	Fn02:P16
400081/ 0x0050	Read-out linear output	P (R/W)	-999 - 9999 (0xFC19-0x270F)	0 (0x0000)	Fn08:P01
400082/ 0x0051	Low linear output value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	2000 (0x07D0)	Fn08:P02
400083/ 0x0052	High linear output value	P (R/W)	-999 - 9999 (0xFC19-0x270F)	400 (0x0190)	Fn08:P01(default 4.00mA)
400084/ 0x0053	Adres Slave	P (R/W)	-999 - 9999 (0xFC19-0x270F)	2000 (0x07D0)	Fn08:P02 (default 20.00mA)
400097/ 0x0060	Baude rate	P (R)	1 - 247 (0x0001- 0x00F7)		Fc01
400098/ 0x0061	Parity	P (R)	3 (0x0003) - 2400bps 4 (0x0004) - 4800bps 5 (0x0005) - 9600bps 6 (0x0006) - 19200bps	5 (0x0005)	
400099/ 0x0062	Modbus Firmware ID	P (R)	0 (0x0000) – no parity 1 (0x0001) - even parity 2 (0x0002) - odd parity	1 (0x0001)	
418435/ 0x4802	Read-out linear output	P (R)	10000 (0x2710)		

10.6. Display test

PMS-970T has special test procedure for LED display, relays and version check. The test is initiated when the meter is powered-up with key pressed. LED segments are lighted-up in following cycle:

- four digit meter version code,
- digital display (all segments simultaneously),
- alarm leds with output relays activation,
- bargraph green (all segments simultaneously),
- bargraph red (all segments simultaneously).

The **ENT** key toggles between simultaneous and single segment activation during test. **ESC** key closes the test.

11. **REVISION HISTORY**

VESION	MODBUS FIRMWARE ID	DATE	CHANGES INFO
2.01		05.2004	
3.00		12.2004	serial communications addend MODBUS RTU
3.05		04.2005	3.00 fixed, display test added
3.06	10000	05.2005	ModbusFirmwareID register added
5.00		07.2018	universal power supply 20 – 250V AC/DC
01.B.001		07.2024	User Manual only for PMS-970T version

12. INSPECTION

12.1. Periodical inspection

Periodical inspection must be conducted according to standards in force. While inspecting, check the condition of electrical connections on clamps (firmness of connections) and the stability of meter fixing.

12.2. Non-periodical inspection

If the meter is exposed to mechanical damage, electrical overvoltage or it works improperly – conduct inspection as necessary.

If there is no signal on the transmission line or signal value is incorrect, check the condition of the cable, the condition of connections on clamps, etc. Check if the power voltage value and load resistance is correct.

If the line is functional, check the operation of the meter.

13. SCRAPPING AND DISPOSAL

Used or damaged meters must be scrapped according to EU Directive (2012/19/EU) on used electrical and electronic equipment, or returned to the producer.

14. ADDITIONAL INFORMATION

The manufacturer retains the right to implement structural and technological alterations that do not impair the meter's parameters.